A central goal of linguistics is to understand the diverse ways in which human language can be organized (Gibson et al. 2019; Lupyan/Dale 2016). In our contribution, we present results of a large scale cross-linguistic analysis of the statistical structure of written language (Koplenig/Wolfer/Meyer 2023) we approach this question from an information-theoretic perspective. To this end, we conduct a large scale quantitative cross-linguistic analysis of written language by training a language model on more than 6,500 different documents as represented in 41 multilingual text collections, so-called corpora, consisting of ~3.5 billion words or ~9.0 billion characters and covering 2,069 different languages that are spoken as a native language by more than 90% of the world population. We statistically infer the entropy of each language model as an index of un. To this end, we have trained a language model on more than 6,500 different documents as represented in 41 parallel/multilingual corpora consisting of ~3.5 billion words or ~9.0 billion characters and covering 2,069 different languages that are spoken as a native language by more than 90% of the world population or ~46% of all languages that have a standardized written representation. Figure 1 shows that our database covers a large variety of different text types, e.g. religious texts, legalese texts, subtitles for various movies and talks, newspaper texts, web crawls, Wikipedia articles, or translated example sentences from a free collaborative online database. Furthermore, we use word frequency information from the Crúbadán project that aims at creating text corpora for a large number of (especially under-resourced) languages (Scannell 2007). We statistically infer the entropy rate of each language model as an information-theoretic index of (un)predictability/complexity (Schürmann/Grassberger 1996; Takahira/Tanaka-Ishii/Dębowski 2016). Equipped with this database and information-theoretic estimation framework, we first evaluate the so-called ‘equi-complexity ...
|