Ergebnisse für *

Es wurden 3 Ergebnisse gefunden.

Zeige Ergebnisse 1 bis 3 von 3.

Sortieren

  1. ChatGPT, what is a 'Glasanwalt'? - Linguistic strategies in a large language model's interpretation of novel compounds
    Erschienen: 2025
    Verlag:  New York : Association for Computing Machinery ; Mannheim : Leibniz-Institut für Deutsche Sprache (IDS)

    This study presents a large language model, GPT-4o, with a dataset of artificial German noun-noun compounds that consist of two simplex noun constituents, each associated with a typical interpretation pattern. The task is to derive plausible... mehr

     

    This study presents a large language model, GPT-4o, with a dataset of artificial German noun-noun compounds that consist of two simplex noun constituents, each associated with a typical interpretation pattern. The task is to derive plausible interpretations. We find that GPT-4o performed very well, displaying stable compositional reasoning strategies. As expected from linguistic literature, typical patterns of the constituents were clearly preferred, with a tendency to favor patterns typical for the head constituent.

     

    Export in Literaturverwaltung
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Konferenzveröffentlichung
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Deutsch; ChatGPT; Kompositum; Großes Sprachmodell
    Lizenz:

    creativecommons.org/licenses/by-nd/4.0/deed.de ; info:eu-repo/semantics/openAccess

  2. Journal for Language Technology and Computational Linguistics. Special issue on LLM fails – failed experiments with generative AI and what we can learn from them
    Erschienen: 2025
    Verlag:  Gesellschaft für Sprachtechnologie und Computerlinguistik ; Mannheim : Leibniz-Institut für Deutsche Sprache (IDS)

    This JLCL special issue focuses on linguistic and NLP experiments with generativeAI that did not yield the desired results. All papers explore the extent in which their failed experiment can contribute to knowledge gain regarding the work with... mehr

     

    This JLCL special issue focuses on linguistic and NLP experiments with generativeAI that did not yield the desired results. All papers explore the extent in which their failed experiment can contribute to knowledge gain regarding the work with generative AI.

     

    Export in Literaturverwaltung   RIS-Format
      BibTeX-Format
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Aufsatz aus einer Zeitschrift
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Großes Sprachmodell; Generative KI; Methodologie; Automatische Sprachanalyse; Computerlinguistik
    Lizenz:

    creativecommons.org/licenses/by-sa/4.0/ ; info:eu-repo/semantics/openAccess

  3. Editorial
    Erschienen: 2025
    Verlag:  Gesellschaft für Sprachtechnologie und Computerlinguistik ; Mannheim : Leibniz-Institut für Deutsche Sprache (IDS)

    Failed experiments typically have no place in scientific discourse; they are discarded and not published. We believe that this practice results in a loss of potential knowledge gain. A systematic reflection on the causes of failures allows for the... mehr

     

    Failed experiments typically have no place in scientific discourse; they are discarded and not published. We believe that this practice results in a loss of potential knowledge gain. A systematic reflection on the causes of failures allows for the critical examination and/or improvement of methods used. Furthermore, when previously failed experiments are repeated and subsequently succeed, progress can be explicitly determined. From the perspective of methodological reflection, the discussion and documentation of failures thus provide added value for the scientific community. This is particularly true in a field like research on and with generative artificial intelligence (AI), which lacks a long-standing tradition and in which best practices are still in the process of being established. This JLCL special issue focuses on linguistic and NLP experiments with generative AI that did not yield the desired results. All papers explore the extent in which their failed experiment can contribute to knowledge gain regarding the work with generative AI.

     

    Export in Literaturverwaltung   RIS-Format
      BibTeX-Format
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Aufsatz aus einer Zeitschrift
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Großes Sprachmodell; Generative KI; Methodologie; Automatische Sprachanalyse; Computerlinguistik
    Lizenz:

    creativecommons.org/licenses/by-sa/4.0/ ; info:eu-repo/semantics/openAccess