Ergebnisse für *

Es wurden 2 Ergebnisse gefunden.

Zeige Ergebnisse 1 bis 2 von 2.

Sortieren

  1. Linguistic Variation and Change in 250 Years of English Scientific Writing: A Data-Driven Approach
    Erschienen: 2020
    Verlag:  Frontiers Media S.A.

    We trace the evolution of Scientific English through the Late Modern period to modern time on the basis of a comprehensive corpus composed of the Transactions and Proceedings of the Royal Society of London, the first and longest-running English... mehr

     

    We trace the evolution of Scientific English through the Late Modern period to modern time on the basis of a comprehensive corpus composed of the Transactions and Proceedings of the Royal Society of London, the first and longest-running English scientific journal established in 1665. Specifically, we explore the linguistic imprints of specialization and diversification in the science domain which accumulate in the formation of “scientific language” and field-specific sublanguages/registers (chemistry, biology etc.). We pursue an exploratory, data-driven approach using state-of-the-art computational language models and combine them with selected information-theoretic measures (entropy, relative entropy) for comparing models along relevant dimensions of variation (time, register). Focusing on selected linguistic variables (lexis, grammar), we show how we deploy computational language models for capturing linguistic variation and change and discuss benefits and limitations.

     

    Export in Literaturverwaltung   RIS-Format
      BibTeX-Format
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Aufsatz aus einer Zeitschrift
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Englisch; Wissenschaftssprache; Sprachwandel; Sprachgebrauch; Automatische Sprachanalyse
    Lizenz:

    creativecommons.org/licenses/by/4.0/deed.de ; info:eu-repo/semantics/openAccess

  2. Evaluating a Dependency Parser on DeReKo
    Erschienen: 2020
    Verlag:  Paris : European Language Resources Association

    We evaluate a graph-based dependency parser on DeReKo, a large corpus of contemporary German. The dependency parser is trained on the German dataset from the SPMRL 2014 Shared Task which contains text from the news domain, whereas DeReKo also covers... mehr

     

    We evaluate a graph-based dependency parser on DeReKo, a large corpus of contemporary German. The dependency parser is trained on the German dataset from the SPMRL 2014 Shared Task which contains text from the news domain, whereas DeReKo also covers other domains including fiction, science, and technology. To avoid the need for costly manual annotation of the corpus, we use the parser’s probability estimates for unlabeled and labeled attachment as main evaluation criterion. We show that these probability estimates are highly correlated with the actual attachment scores on a manually annotated test set. On this basis, we compare estimated parsing scores for the individual domains in DeReKo, and show that the scores decrease with increasing distance of a domain to the training corpus.

     

    Export in Literaturverwaltung
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Konferenzveröffentlichung
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Korpus; Parser; Evaluation; Zuverlässigkeit; Computerlinguistik
    Lizenz:

    creativecommons.org/licenses/by-nc/4.0/ ; info:eu-repo/semantics/openAccess