Natural (conversational) speech, compared to cannonical speech, is earmarked by the tremendous amount of variation that often leads to a massive change in pronunciation. Despite many attempts to explain and theorize the variability in conversational speech, its unique characteristics have not played a significant role in linguistic modeling. One of the reasons for variation in natural speech lies in a tendency of speakers to reduce speech, which may drastically alter the phonetic shape of words. Despite the massive loss of information due to reduction, listeners are often able to understand conversational speech even in the presence of background noise. This dissertation investigates two reduction processes, namely regressive place assimilation across word boundaries, and massive reduction and provides novel data from the analyses of speech corpora combined with experimental results from perception studies to reach a better understanding of how humans handle natural speech. The successes and failures of two models dealing with data from natural speech are presented: The FUL-model (Featurally Underspecified Lexicon, Lahiri & Reetz, 2002), and X-MOD (an episodic model, Johnson, 1997). Based on different assumptions, both models make different predictions for the two types of reduction processes under investigation. This dissertation explores the nature and dynamics of these processes in speech production and discusses its consequences for speech perception. More specifically, data from analyses of running speech are presented investigating the amount of reduction that occurs in naturally spoken German. Concerning production, the corpus analysis of regressive place assimilation reveals that it is not an obligatory process. At the same time, there emerges a clear asymmetry: With only very few exceptions, only [coronal] segments undergo assimilation, [labial] and [dorsal] segments usually do not. Furthermore, there seem to be cases of complete neutralization where the underlying Place of Articulation feature has ...
|