Mineral maturity and crystallinity index are distinct characteristics of bone mineral.
International audience ; The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used....
mehr
Volltext:
|
|
Zitierfähiger Link:
|
|
International audience ; The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2-4 mum thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis.
|
Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake.
International audience ; BACKGROUND: The mechanisms underlying body weight evolution after diet-induced weight loss are poorly understood. OBJECTIVE: We aimed to identify and characterize differences in the subcutaneous adipose tissue (SAT)...
mehr
Volltext:
|
|
Zitierfähiger Link:
|
|
International audience ; BACKGROUND: The mechanisms underlying body weight evolution after diet-induced weight loss are poorly understood. OBJECTIVE: We aimed to identify and characterize differences in the subcutaneous adipose tissue (SAT) transcriptome of subjects with different weight changes after energy restriction-induced weight loss during 6 mo on 4 different diets. DESIGN: After an 8-wk low-calorie diet (800 kcal/d), we randomly assigned weight-reduced obese subjects from 8 European countries to receive 4 diets that differed in protein and glycemic index content. In addition to anthropometric and plasma markers, SAT biopsies were taken at the beginning [clinical investigation day (CID) 2] and end (CID3) of the weight follow-up period. Microarray analysis was used to define SAT gene expression profiles at CID2 and CID3 in 22 women with continued weight loss (successful group) and in 22 women with weight regain (unsuccessful group) across the 4 dietary arms. RESULTS: Differences in SAT gene expression patterns between successful and unsuccessful groups were mainly due to weight variations rather than to differences in dietary macronutrient content. An analysis of covariance with total energy intake as a covariate identified 1338 differentially expressed genes. Cellular growth and proliferation, cell death, cellular function, and maintenance were the main biological processes represented in SAT from subjects who regained weight. Mitochondrial oxidative phosphorylation was the major pattern associated with continued weight loss. CONCLUSIONS: The ability to control body weight loss independent of energy intake or diet composition is reflected in the SAT transcriptome. Although cell proliferation may be detrimental, a greater mitochondrial energy gene expression is suggested as being beneficial for weight control. This trial was registered at clinicaltrials.gov as NCT00390637.
|