Ergebnisse für *

Es wurden 3 Ergebnisse gefunden.

Zeige Ergebnisse 1 bis 3 von 3.

Sortieren

  1. Big Data Visualization
    learn effective tools and techniques to separate big data into manageable and logical components for efficient data visualization
    Erschienen: February 2017; © 2017
    Verlag:  Packt, Birmingham

    Cover -- Copyright -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Introduction to Big Data Visualization -- An explanation of data visualization --... mehr

    Leibniz-Institut für Deutsche Sprache (IDS), Bibliothek
    keine Fernleihe
    Hochschulbibliothek Friedensau
    Online-Ressource
    keine Fernleihe

     

    Cover -- Copyright -- Credits -- About the Author -- About the Reviewer -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Introduction to Big Data Visualization -- An explanation of data visualization -- Conventional data visualization concepts -- Training options -- Challenges of big data visualization -- Big data -- Using Excel to gauge your data -- Pushing big data higher -- The 3Vs -- Volume -- Velocity -- Variety -- Categorization -- Such are the 3Vs -- Data quality -- Dealing with outliers -- Meaningful displays -- Adding a fourth V -- Visualization philosophies -- More on variety -- Velocity -- Volume -- All is not lost -- Approaches to big data visualization -- Access, speed, and storage -- Entering Hadoop -- Context -- Quality -- Displaying results -- Not a new concept -- Instant gratifications -- Data-driven documents -- Dashboards -- Outliers -- Investigation and adjudication -- Operational intelligence -- Summary -- Chapter 2: Access, Speed, and Storage with Hadoop -- About Hadoop -- What else but Hadoop? -- IBM too! -- Log files and Excel -- An R scripting example -- Points to consider -- Hadoop and big data -- Entering Hadoop -- AWS for Hadoop projects -- Example 1 -- Defining the environment -- Getting started -- Uploading the data -- Manipulating the data -- A specific example -- Conclusion -- Example 2 -- [Sorting] -- Sorting -- Parsing the IP -- Summary -- Chapter 3: Understanding Your Data Using R -- [Definitions and explanations] -- Definitions and explanations -- Comparisons -- Contrasts -- Tendencies -- Dispersion -- Adding context -- About R -- R and big data -- Example 1 -- Digging in with R -- Example 2 -- Definitions and explanations -- No looping -- Comparisons -- Contrasts -- Tendencies -- Dispersion -- Summary -- Chapter 4: Addressing Big Data Quality -- Data quality categorized DataManager -- DataManager and big data -- Some examples -- Some reformatting -- A little setup -- Selecting nodes -- Connecting the nodes -- The work node -- Adding the script code -- Executing the scene -- Other data quality exercises -- What else is missing? -- Status and relevance -- Naming your nodes -- More examples -- Consistency -- Reliability -- Appropriateness -- Accessibility -- Other Output nodes -- Summary -- Chapter 5: Displaying Results Using D3 -- About D3 -- D3 and big data -- Some basic examples -- Getting started with D3 -- A little down time -- Visual transitions -- Multiple donuts -- More examples -- Another twist on bar chart visualizations -- One more example -- Adopting the sample -- Summary -- Chapter 6: Dashboards for Big Data - Tableau -- About Tableau -- Tableau and big data -- Example 1 - Sales transactions -- Adding more context -- Wrangling the data -- Moving on -- A Tableau dashboard -- Saving the workbook -- Presenting our work -- More tools -- Example 2 -- What's the goal? - purpose and audience -- Sales and spend -- Sales v Spend and Spend as % of Sales Trend -- Tables and indicators -- All together now -- Summary -- Chapter 7: Dealing with Outliers Using Python -- About Python -- Python and big data -- Outliers -- Options for outliers -- Delete -- Transform -- Outliers identified -- Some basic examples -- Testing slot machines for profitability -- Into the outliers -- Handling excessive values -- Establishing the value -- Big data note -- Setting outliers -- Removing Specific Records -- Redundancy and risk -- Another point -- If Type -- Reused -- Changing specific values -- Setting the Age -- Another note -- Dropping fields entirely -- More to drop -- More examples -- A themed population -- A focused philosophy -- Summary -- Chapter 8: Big Data Operational Intelligence with Splunk -- About Splunk Splunk and big data -- Splunk visualization -  real-time log analysis -- IBM Cognos -- Pointing Splunk -- Setting rows and columns -- Finishing with errors -- Splunk and processing errors -- Splunk visualization - deeper into the logs -- New fields -- Editing the dashboard -- More about dashboards -- Summary -- Index

     

    Export in Literaturverwaltung   RIS-Format
      BibTeX-Format
    Hinweise zum Inhalt
    Quelle: Leibniz-Institut für Deutsche Sprache, Bibliothek
    Sprache: Englisch
    Medientyp: Ebook
    Format: Online
    ISBN: 9781785284168
    RVK Klassifikation: ST 265
    Schlagworte: Big data; Information visualization
    Umfang: 1 Online-Ressource (299 pages)
  2. Big data visualization
    learn effective tools and techniques to separate big data into manageable and logical components for efficient data visualization
    Erschienen: 2017
    Verlag:  Packt Publishing, Birmingham, UK

    Leibniz-Institut für Deutsche Sprache (IDS), Bibliothek
    keine Fernleihe
    Export in Literaturverwaltung   RIS-Format
      BibTeX-Format
    Hinweise zum Inhalt
    Quelle: Leibniz-Institut für Deutsche Sprache, Bibliothek
    Sprache: Englisch
    Medientyp: Ebook
    Format: Online
    ISBN: 9781785284168; 1785284169; 9781785281945
    Schlagworte: Big data; Information visualization; Big data; Information visualization
    Umfang: 1 Online-Ressource (1 volume)
  3. Technologies of vision
    the war between data and images
    Erschienen: [2017]
    Verlag:  The MIT Press, Cambridge, MA

    An investigation of the computational turn in visual culture, centered on the entangled politics and pleasures of data and images. mehr

    Zugang:
    Resolving-System (Lizenzpflichtig)
    Universitätsbibliothek Osnabrück
    keine Fernleihe
    Universitätsbibliothek der Eberhard Karls Universität
    keine Fernleihe

     

    An investigation of the computational turn in visual culture, centered on the entangled politics and pleasures of data and images.

     

    Export in Literaturverwaltung   RIS-Format
      BibTeX-Format
    Quelle: Verbundkataloge
    Sprache: Englisch
    Medientyp: Ebook
    Format: Online
    ISBN: 9780262343336; 0262343339
    Schriftenreihe: The MIT Press Ser
    Schlagworte: Images, Photographic ; Political aspects; Information visualization; Video surveillance ; Social aspects; Image processing ; Social aspects; DIGITAL HUMANITIES & NEW MEDIA/General; ARTS/Photography & Film/General
    Umfang: 1 online resource.