Letzte Suchanfragen

Ergebnisse für *

Es wurden 1 Ergebnisse gefunden.

Zeige Ergebnisse 1 bis 1 von 1.

Sortieren

  1. Semantic author name disambiguation with word embeddings
    Erschienen: 2022
    Verlag:  Cham : Springer ; Mannheim : Leibniz-Institut für Deutsche Sprache (IDS) [Zweitveröffentlichung]

    We present a supervised machine learning AND system which tackles semantic similarity between publication titles by means of word embeddings. Word embeddings are integrated as external components, which keeps the model small and efficient, while... mehr

     

    We present a supervised machine learning AND system which tackles semantic similarity between publication titles by means of word embeddings. Word embeddings are integrated as external components, which keeps the model small and efficient, while allowing for easy extensibility and domain adaptation. Initial experiments show that word embeddings can improve the Recall and F score of the binary classification sub-task of AND. Results for the clustering sub-task are less clear, but also promising and overall show the feasibility of the approach.

     

    Export in Literaturverwaltung
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Konferenzveröffentlichung
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Maschinelles Lernen; Veröffentlichung; Deep learning; Semantik; Computerlinguistik
    Lizenz:

    rightsstatements.org/page/InC/1.0/ ; info:eu-repo/semantics/openAccess