Letzte Suchanfragen

Ergebnisse für *

Es wurden 1 Ergebnisse gefunden.

Zeige Ergebnisse 1 bis 1 von 1.

Sortieren

  1. Transparent, efficient, and robust word embedding access with WOMBAT
    Erschienen: 2022
    Verlag:  Stroudsburg, Pennsylvania : Association for Computational Linguistics ; Mannheim : Leibniz-Institut für Deutsche Sprache (IDS)

    We present WOMBAT, a Python tool which supports NLP practitioners in accessing word embeddings from code. WOMBAT addresses common research problems, including unified access, scaling, and robust and reproducible preprocessing. Code that uses WOMBAT... mehr

     

    We present WOMBAT, a Python tool which supports NLP practitioners in accessing word embeddings from code. WOMBAT addresses common research problems, including unified access, scaling, and robust and reproducible preprocessing. Code that uses WOMBAT for accessing word embeddings is not only cleaner, more readable, and easier to reuse, but also much more efficient than code using standard in-memory methods: a Python script using WOMBAT for evaluating seven large word embedding collections (8.7M embedding vectors in total) on a simple SemEval sentence similarity task involving 250 raw sentence pairs completes in under ten seconds end-to-end on a standard notebook computer.

     

    Export in Literaturverwaltung
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Konferenzveröffentlichung
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Python; Automatische Sprachanalyse; Code; Computerlinguistik
    Lizenz:

    creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess