Ergebnisse für *

Es wurden 1 Ergebnisse gefunden.

Zeige Ergebnisse 1 bis 1 von 1.

Sortieren

  1. To BERT or not to BERT – Comparing contextual embeddings in a deep learning architecture for the automatic recognition of four types of speech, thought and writing representation
    Erschienen: 2023
    Verlag:  Aachen : CEUR-WS ; Mannheim : Leibniz-Institut für Deutsche Sprache (IDS)

    We present recognizers for four very different types of speech, thought and writing representation (STWR) for German texts. The implementation is based on deep learning with two different customized contextual embeddings, namely FLAIR embeddings and... mehr

     

    We present recognizers for four very different types of speech, thought and writing representation (STWR) for German texts. The implementation is based on deep learning with two different customized contextual embeddings, namely FLAIR embeddings and BERT embeddings. This paper gives an evaluation of our recognizers with a particular focus on the differences in performance we observed between those two embeddings. FLAIR performed best for direct STWR (F1=0.85), BERT for indirect (F1=0.76) and free indirect (F1=0.59) STWR. For reported STWR, the comparison was inconclusive, but BERT gave the best average results and best individual model (F1=0.60). Our best recognizers, our customized language embeddings and most of our test and training data are freely available and can be found via www.redewiedergabe.de or at github.com/redewiedergabe.

     

    Export in Literaturverwaltung
    Quelle: BASE Fachausschnitt Germanistik
    Sprache: Englisch
    Medientyp: Konferenzveröffentlichung
    Format: Online
    DDC Klassifikation: Sprache (400)
    Schlagworte: Einbettung; Deutsch; Testdaten; Textanalyse
    Lizenz:

    creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess